Approximations of Geodesic Distances for Incomplete Triangular Manifolds
نویسندگان
چکیده
We present a heuristic algorithm to compute approximate geodesic distances on a triangular manifold S containing n vertices with partially missing data. The proposed method computes an approximation of the geodesic distance between two vertices pi and pj on S and provides an upper bound of the geodesic distance that is shown to be optimal in the worst case. This yields a relative error bound of the estimate that is worst-case optimal. The algorithm approximates the geodesic distance without trying to reconstruct the missing data by embedding the surface in a low dimensional space via multi-dimensional scaling (MDS). We derive a new heuristic method to add an object to the embedding computed via least-squares MDS.
منابع مشابه
A Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملRicci tensor for $GCR$-lightlike submanifolds of indefinite Kaehler manifolds
We obtain the expression of Ricci tensor for a $GCR$-lightlikesubmanifold of indefinite complex space form and discuss itsproperties on a totally geodesic $GCR$-lightlike submanifold of anindefinite complex space form. Moreover, we have proved that everyproper totally umbilical $GCR$-lightlike submanifold of anindefinite Kaehler manifold is a totally geodesic $GCR$-lightlikesubmanifold.
متن کاملManifold Valued Statistics, Exact Principal Geodesic Analysis and the Effect of Linear Approximations
Manifolds are widely used to model non-linearity arising in a range of computer vision applications. This paper treats statistics on manifolds and the loss of accuracy occurring when linearizing the manifold prior to performing statistical operations. Using recent advances in manifold computations, we present a comparison between the non-linear analog of Principal Component Analysis, Principal ...
متن کاملApproximating Geodesic Distances on 2-Manifolds in R3
We present an algorithm for approximating geodesic distances on 2-manifolds in R. Our algorithm works on an ε-sample of the underlying manifold and computes approximate geodesic distances between all pairs of points in this sample. The approximation error is multiplicative and depends on the density of the sample. For an ε-sample S, the algorithm has a near-optimal running time of O ( |S| log |...
متن کاملHow to project 'circular' manifolds using geodesic distances?
Recent papers have clearly shown the advantage of using the geodesic distance instead of the Euclidean one in methods performing non-linear dimensionality reduction by means of distance preservation. This new metric greatly improves the performances of existing algorithms, especially when strongly crumpled manifolds have to be unfolded. Nevertheless, neither the Euclidean nor the geodesic dista...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007